
Latent Dirichlet Allocation for Object Segmentation

Korawat Tanwisuth

May 4, 2019

Abstract

In this paper, we apply Latent Dirichlet Allocation, a model typically used to
model hidden topics in a document corpus, to solve object segmentation problem.
We illustrate how to formulate a vision problem to fit the framework of LDA. We
then benchmark the results against K-means algorithm.

1 Introduction

Latent Dirichlet Allocation (LDA) has been widely used in the domain of language mod-
eling to discover latent topics given a document corpus [1]. In recent years, it has been
applied to solve computer vision problems. As an illustration, LDA is used to discover
objects from a collection of images [3], to classify image into different scene categories [4],
to classify human actions [2], and to model atomic activities in visual surveillance [5].
Motivated by these applications of LDA in computer vision, we apply LDA to segment
objects in images into different object classes.

2 LDA

LDA is a generative probabilistic model for modeling a collection of documents in a
corpus [1]. It is a three-level hierarchical model that assumes a bag of word assumption,
meaning that the position of each word in a document is disregarded and only their
frequencies are taken into account. The three levels consist of corpus level, the document
level, and the individual word level. For each document, the algorithm first samples
a distribution over a collection of topics, which follows a Dirichlet distribution with
parameter α. It then selects one of the topics from this distribution. Then, the algorithm
draws a word from a multinomial distribution over terms specific to the sampled topics
zi, which again follows a Dirichlet distribution with parameter β. The generative process
can be seen in the graphical model shown in Figure 1.

1. For each topic k = 1, 2, . . . , K
φk ∼ Dirichlet(β)

2. For each document d ∈ D:

(a) θd ∼ Dirichlet(α)

(b) For each word wi in d:

i. zi ∼Multinomial(θd)

1

ii. wi ∼Multinomial(φ(zi))

Figure 1: Graphical Model for Latent Dirichlet Allocation. K denotes the size of topics.
N denotes the size of corpus. D denotes the number of documents. The shaded node
means the variable is observed.

3 Gibbs Sampling

While the original version of LDA uses variational inference to fit the model, we decide
to use Gibbs sampling to obtain parameters of our model. In particular, we use collapsed
Gibbs sampling to fit our model, a variation of Gibbs sampling which integrates out
the parameters Θ = (θ1, . . . , θD) and Φ = (φ1, . . . , φK). To derive the Gibbs sampling
algorithm, we first need to specify the joint distribution over all the parameters and the
data. Using the generative process described in the previous section, the joint distribution
after integrating out the parameters can be factored as [6]:

p(z,w|α, β) = p(w|z, β)p(z|α)

We will now find each expression on the right hand side.

p(w|z, β) =

∫
p(w|z,Θ, β)p(Θ|β)dΘ

=
K∏
k=1

∫
p(w|z, θk, β)p(θk|β)dθk

=
K∏
k=1

1

B(β)

∫ V∏
v=1

φ
Ψk,v

k,v ×
V∏
v=1

φβ−1
k,v dφk

=
K∏
k=1

1

B(β)

∫ V∏
v=1

φ
Ψk,v+β−1

k,v dφk

=
K∏
k=1

B(Ψk + β)

B(β)

(1)

2

where Ψk,v =
∑N

i=1 I(wi = v, zi = k) denotes the number of times topic k is assigned
to word v. Here, Ψk denotes kth row of the count matrix Ψ and N denotes the size of
the corpus. The integral follows from conjugacy of Dirichlet and multinomial sampling
model.

Using the same argument, we can show that

p(z|α) =

∫
p(z|Θ, α)p(Θ|α)dΘ =

D∏
d=1

B(Ωd + α)

B(α)

Similarly, Ωd,k denotes the number of times words in document d is assigned to topic
k and Ωd denotes the dth row of the count matrix Ω.

Now, to perform collapsed Gibbs sampling, we will need to find the following full
conditional:

p(zi = k|z−i,w, α, β) ∝ p(z,w|α, β)

p(z−i,w−i|α, β)

=
B(Ψk + β)

B(Ψ−i
k + β)

× B(Ωd + α)

B(Ω−i
d + α)

=
Ψk,v + β1 − 1∑V

v=1 Ψk,v + V β1 − 1
× Ωd,k + α1 − 1∑K

k=1 Ωd,k +Kα1 − 1

∝ Ψk,v + β1 − 1∑V
v=1 Ψk,v + V β1 − 1

× Ωd,k + α1 − 1

(2)

where z−i indicates the latent variable z without the ith component.

The full conditional here is easily updated since we only need to decrement the count
matrix Ψ and Ω before computing the probability that zi takes a particular value k and
then sample zi = k based on the updated probability given in (2)

4 Problem Formulation

The data set we use is the MSRC image data set, which consists of 240 images and 14
object classes. Each image comes with a ground truth segmentation labeled by humans
2. Our objective here is to apply an unsupervised learning algorithm to segment these
images into 14 object classes. In order to apply LDA, a model typically used in natural
language processing, to a problem in computer vision, we need to formulate our problem
in such a way that the requirements of LDA are satisfied. To model our data using LDA,
we need to specify what documents and words mean in our context. It might not be
immediately clear what should be considered as documents and words in this problem;
however, one option is to let each image be a document and each word be some local
feature in an image. To capture local features in an image, we decide to use K-means
algorithm to cluster local patches and use the centroids given by the K-means algorithm
as our vocabulary. Thus, the size of our vocabulary is determined by the number of
clusters we specify for K-means.

3

Figure 2: Original image(left column). Ground truth labeled by human (right column)

5 Implementation

As laid out in problem formulation, we need to assign each local patch a label based on
topic assignments provided by LDA. For each image, we first sample coordinates densely
on a grid of pixels. For each pixel, we create a square box of size 12 × 12 to capture
local features inside the image. We then sample 5000 of these patches to ensure that
we cover the majority of the image. The selection of the patch size and the number of
patches is based on several experiments we perform to ensure we keep a balance between
complexity and accuracy. After sampling these local patches for each image, we combine
these local patches into a collection of N feature vectors of size ph × pw × 3, where N
denotes the total number of images in the data set, ph denotes patch height, and pw
denotes patch width. This procedure is performed so that we can use K-means algorithm
to create a codebook of size V , which becomes the size of our vocabulary. Specifically, we
use mini batch K-means, an algorithm based on K-means that allows learning of cluster
assignments by using mini batches of data. We use the mini batch version because we
want a relatively large number of vocabularies in order to allow LDA to further classify
these groups into final cluster assignments.

After performing the K-means algorithm, each of these feature vectors of local patches
then receives a label based on the cluster assignment from K-means algorithm. The final
cluster assignments which become our codewords in our vocabulary are shown in 3. We
then perform LDA on a document-term matrix created by counting how many of the
V clusters given by K-means are in each image. Thus, a row represents a document
or an image and a column represents a word in the vocabulary or one of the centroids.
LDA then proceeds to cluster each of the V groups into 14 classes, the total number of
object classes in the data set. The choice of hyper-parameters, α and β, is based on the
experiment we perform in the result section.

To learn the parameters Θ = (θ1, . . . , θD) and Φ = (φ1, . . . , φK), we use collapsed
Gibbs sampling as explained the earlier section. We create two count matrices Ω and Ψ
to count the number of times each topic is assigned to a word in each document and the
number of times each word in the corpus is assigned to a particular topic respectively. For
each document m and word n, we decrement the entries Ωwm,n,zm,n and Ψzm,n,wm,n , where
wm,n denotes word n in document m and zm,n denotes latent variable corresponding to
the current word in that document before sample the latent variable zi. This operation
is reflected in the update of the full conditional (2). We then sample the updated label
with probability according to (2) and update the count matrices. We then keep updating

4

the latent variable zi based on the rule described until we reach convergence. In this case,
our convergence criteria is simply the likelihood function. Now, we estimate Θ and Φ
using the following equations:

φ̂k,v =
Ψk,v + β∑V

v′=1 Ψk,v′ + V β
,

θ̂m,k =
Ωd,k + α∑K

k′=1 Ωd,k′ +Kα

We use Φ, the topic-word distribution, to label each of the centroid based on the 14
object classes. For each word v in the vocabulary, we simply take the most probable topic
assignment according to topic-word distribution. Based on this cluster assignment, all
the local patches that are in the same cluster are assigned the same labels. Because we
sample densely from a grid for each image, there will be overlap between local patches.
Hence, to segment the object by assigning color to each pixel based on topic assignment
given by LDA, we decide to take the most occurring values of topic assignments for each
pixel. If there is a tie or there is no patch that cover that pixel, we look for neighboring
values to decide the majority vote. We show the results we obtain from LDA and those
from regular K-means algorithm in the next section.

Figure 3: Image patches densely samples from our image from our data set are clustered
into 1000 clusters. 64 of them are randomly chosen and shown here. Each cluster center
becomes a word in our vocabulary. Notice that each centroid has different visual property
, implying that our vocabulary has good coverage for the data set

5

Figure 4: The effect of varying hyper-parameters, α and β.

6 Results and Benchmark

We will now benchmark our method against regular K-means to see if LDA can im-
prove the clustering procedure. While we can visually inspect the result of an object
segmentation algorithm, we decide to use a numerical metric to measure the quality of
the segmentation given by an algorithm. To compare different methods numerically, we
create a matrix of all 0s and allocate a 1 in the location of a pixel when there is a change of
boundary in the ground truth image labeled by humans. We then apply the same method
to the image output by the algorithm. Now, let xij denote the value of the matrix at row
i and column j in the image colored by the algorithm, and yij denote the value in the
matrix corresponding to the ground truth image. We use the following metric to compare
the result of an object segmentation algorithm.

L =
∑
j

∑
i

|xij − yij|

To select the hyper-parameters, we perform an experiment by creating a grid of α and
β values ranging from 0.001 to 10 and select the hyper-parameters that minimizes the
loss function we chose. We can see the effect of each hyper-parameter in 4. When we fix
each β and vary the value of α (looking across the row), the images become less noisy as
the value α increases. α is the intensity parameter which controls the weight of each topic
on each document. A high value of α means we put relatively equal weights among many
topics. Likewise, when we fix each α and vary the value of β, the the image becomes less
noisy as β controls the intensity of word for each topic. A low value means we will have a
few dominant words for each topic. As discussed in the implementation section, we take
the maximum of the probability of a word belonging to each topic. Based on the value
of the loss function, we chose α = 0.01 and β = 10.

6

Table 1: Errors by categories for each clustering algorithm

Grasses Trees Houses Airplanes Cows Faces Cars Bicycles
LDA 2353 3906 3864 2919 3019 4247 4508 5639
K-means 2740 4453 4420 3567 3588 4657 4727 6442
Random 16081 16257 16186 16116 16163.3 15918 15976 16739

Table 2: Average errors across 240 images for each algorithm
LDA K-means Random Assignment
3807 4324 16180

While there are 14 object classes, some images might contain many object classes.
This, in turn, reduces the total number of categories of images to 8 categories. We can
see in 1 that, for each category, LDA outperforms K-means and that the improvement
from random assignment is dramatic. We illustrate the results for each image category
below in 5 and 6. We can see that, on average, the algorithm performs particularly well;
however, on such category as bicycles and airplanes, the images look noisy as the objects
do not stand out like those in other categories.

Figure 5: Original images are shown in the first row. The images in the second row are
the labels given by humans. The third row shows the images produced by LDA.

7

Figure 6: Original images are shown in the first row. The images in the second row are
the labels given by humans. The third row shows the images produced by LDA.

7 Conclusion

In this paper, we are able to apply LDA to solve image segmentation problem. We
illustrate how to formulate the problem to fit the LDA framework and show how to learn
parameters in LDA using collapsed Gibbs sampling. Our results show that, compared to
K-means, LDA improves the quality of the segmentation based on L1 metric we chose. A
limitation of our approach, however, is that we ignore spatial structure in the image by
assuming the bag of word assumption. Future research effort might be worth investigating
how to incorporate spatial structure into LDA model, allowing the model to better handle
image data.

8

References

[1] D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent Dirichlet Allocation. Journal of
Machine Learning Research, 3:993–1022, 2003.

[2] J. C. Niebles, H. Wang, and L. Fei-Fei. Unsupervised learning of human action
categories using spatialtemporal words. In Proc. BMVC, 2006.

[3] J. Sivic, B. C. Russell, A. A. Efros, A. Zisserman, and W. T. Freeman. Discovering
object categories in image collections. In Proc. ICCV, 2005.

[4] L. Fei-Fei and P. Perona. A bayesian hierarchical model for learning natural scene
categories. In Proc. CVPR, 2005.

[5] X. Wang, X. Ma, and E. Grimson. Unsupervised activity perception by hierarchical
bayesian models. In Proc. CVPR, 2007.

[6] Y. Wang. Distributed Gibbs sampling of latent topic. 2008

9

	Introduction
	LDA
	Gibbs Sampling
	Problem Formulation
	Implementation
	Results and Benchmark
	Conclusion

