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Gaussian Process Overview

Definition: A Gaussian process is a collection of random variables such
that any finite number of which have a Gaussian distribution.

A Gaussian process is parametrized by:

m(x) (a mean function)

k(x, x′) (a covariance function)
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Gaussian Process Regression Overview

Figure: Noisy observations yi = sin(6xi) + 0.2εi where εi ∼ N (0, 1)

Given a set of input out put {xi, yi}ni=1, we are interested in finding the
posterior p(f |y,X).

Korawat Tanwisuth (UT Austin) Gaussian Process for Big Data by James Hensman December 6, 2018 4 / 18



Gaussian Process Regression Overview
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Gaussian Process Regression Overview

To perform inference, we are interested in the quantity:

p(f |y,X) =
p(y|f)p(f |X)∫
p(y|f)p(f |X)df

p(f |X) = N (f |0,Knn)

p(y|f) = N (y|f , σ2I)
p(y|X) = N (y|0,Knn + σ2I)

(1)

where Knn denotes the covariance between our data points. This can
grow very large as we obtain more samples.
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Computational Issues

Inference with the model involves inverting Knn.
Time complexity: O(n3)

Storage: O(n2)
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Introducing Pseudo Inputs Z,u

We now introduce m inducing points Z, which lives in the same space as
X. Denote u the evaluation of f at Z = {zi}mi=1.
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Alternative Posterior

Original posterior:

p(f |y,X) =
p(y|f)p(f |X)∫
p(y|f)p(f |X)df

(2)

New posterior:

p(u|y,Z) = p(y|u)p(u|Z)∫
p(y|u)p(u|Z)du

(3)

We now turn our attention to this quantity since m, the number of
inducing points, is much smaller than n, the number of observations.
Still, p(y|u) involves inverting Knn.

p(y|u) = p(y|f)p(f |u)
p(f |y,u)
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Variational Bayes

ln p(y|u) = Ep(f |u)[ln p(y|f)] + Ep(f |u)[ln
p(f |u)
p(f |y,u)

]

= ln p̃(y|u) +KL[p(f |u)||p(f |y,u)]
(4)

With this lower bound p̃(y|u), we do not need to invert Knn.

p̃(y|u) =
n∏

i=1

N (yi|kT
mnK

−1
mmu, σ2) exp{− 1

2σ2
(knn − kTK−1mmkmn)}
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Lower bound on marginal likelihood

With this new lower bound, if we use ln p̃(y|u) to obtain a lower bound
for log p(y|X) by marginalizing u. We get a complexity O(nm2). This
still depends on n. Instead, we will treat u as variational parameter.
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Final objective function

log p(y|X) ≥ Eq(u)[log p̃(y|u)]−KL(q(u)||p(u)) = L

Now, we are interested in finding the variational distribution q(u) where
q(u) = N (u|m,S).

L depends on:

parameters of the variational distribution q(u)

location of inducing inputs Z

parameters of the covariance function

Optimizing Z can be computationally expensive so we suggest performing
K-means clustering on X and use the centroids as Z.
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Stochastic Optimization

Algorithm:

Take a mini-batch of data to compute noisy estimate of the gradient

Move in the direction of the gradient where step size is controlled by
learning rate

Stop when convergence criteria is met (ie. number of iterations or
change in objective function)
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Natural Gradient

Figure: The blue line shows the path using a natural gradient and the purple line
depicts the path using a regular gradient.

g̃(θ) = G(θ)−1
∂L
∂θ

=
∂L
∂η

where θ is the canonical parameter and η is the expectation parameter of
exponential family.
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Application

Data:

Flight arrivals and departures in 2015 from DOT’s monthly Air Travel
and Consumer Report

5,714,008 rows, 31 columns

Target variable (Flight delays)

Model:

7 predictors (Month, Day of the month, Day of the week, Airtime,
Arrival time, Departure time, Distance that needs to be covered)

800,000 (700,000 for training and 100,000 for testing)

m = 50, 100, 200, 500 , 800, 1200 inducing points

Momentum = 0.9, Batch-size = 100, Learning rate = 0.1
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Result
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Automatic Relevance Determination
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Conclusion

We introduce inducing points to help approximate the posterior of the
latent function.

We treat u as variational parameters to find the variational
distribution q(u) that minimizes the lower bound to the log marginal.

We use stochastic optimization to find the optimal parameters.

Result: Complexity reduces to O(m3), which is independent of n.
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